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Abstract
Accurately segmenting the structure of the fetal head (FH) and performing biometry measurements, including head cir-
cumference (HC) estimation, stands as a vital requirement for addressing abnormal fetal growth during pregnancy under 
the expertise of experienced radiologists using ultrasound (US) images. However, accurate segmentation and measurement 
is a challenging task due to image artifact, incomplete ellipse fitting, and fluctuations due to FH dimensions over different 
trimesters. Also, it is highly time-consuming due to the absence of specialized features, which leads to low segmentation 
accuracy. To address these challenging tasks, we propose an automatic density regression approach to incorporate appear-
ance and shape priors into the deep learning-based network model (DR-ASPnet) with robust ellipse fitting using fetal US 
images. Initially, we employed multiple pre-processing steps to remove unwanted distortions, variable fluctuations, and a 
clear view of significant features from the US images. Then some form of augmentation operation is applied to increase the 
diversity of the dataset. Next, we proposed the hierarchical density regression deep convolutional neural network (HDR-
DCNN) model, which involves three network models to determine the complex location of FH for accurate segmentation 
during the training and testing processes. Then, we used post-processing operations using contrast enhancement filtering 
with a morphological operation model to smooth the region and remove unnecessary artifacts from the segmentation results. 
After post-processing, we applied the smoothed segmented result to the robust ellipse fitting-based least square (REFLS) 
method for HC estimation. Experimental results of the DR-ASPnet model obtain 98.86% dice similarity coefficient (DSC) 
as segmentation accuracy, and it also obtains 1.67 mm absolute distance (AD) as measurement accuracy compared to other 
state-of-the-art methods. Finally, we achieved a 0.99 correlation coefficient (CC) in estimating the measured and predicted 
HC values on the HC18 dataset.

Keywords  Fetal head (FH) · Head circumference (HC) estimation · Ultrasonic (US) imaging · Image segmentation · 
Measurement · Density regression · Deep learning networks

Introduction

Ultrasonic (US) imaging remains a significant screening 
tool for monitoring and detecting abnormalities in fetal 
growth during pregnancy. It has the advantage of record-
ing trimester scans using video clips for future reference 
[1]. US images clearly identify the scanning reports, such 
as the pregnant woman’s name, identification number, date 
of the US examination, birth date, and examination site (pri-
vate scanning center or hospital) [2, 3]. The collection of 
the first trimester (0–13 weeks) provides a week-by-week 
examination of embryonic and fetal development, exposing 
all the intricate details of fetal growth. A unique peak of fetal 
development inside the womb was generated to reveal all 
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the intricate details of fetal growth in the second trimester 
(14 to 27 weeks). Next, the third trimester (28 to 42 weeks) 
refers to the full growth of fetal which is its full turn and 
preparation for birth [4, 5]. Based on these findings, the 
sonographer will take trimester measurements to estimate 
fetal growth [6].

Nowadays, there are lots of biometric measurements to 
take during the US examination. In the report of the fetal 
size examination, some measurements are included: abdomi-
nal circumference (AC), biparietal diameter (BPD), femur 
length (FL), and head circumference (HC) [7, 8]. Estimated 
delivery date (EDD) can be determined by combining BPD 
and HC measurements. In previous studies, HC predicted 
the date of confinement better than BPD [9]. HC is one of 
the significant biometric measurements for estimating ges-
tational age (GA) and monitoring the growth of the fetus in 
US images. Also, it measures the outside of the head skull 
in the form of an ellipse; fewer than three standard devia-
tions from the mean could be a sign of microcephaly [10, 
11]. In clinical routine, an automatic measurement of fetal 
biometrics is performed on US images. The majority of the 
current computer-aided detection (CAD) systems use fetal 
HC measurement techniques under the premise that the FH 
contour is roughly elliptical [12]. A crucial step in assessing 
HC is identifying the FH contour, but due to flaws in fetal 
US imaging, such as artifacts, attenuation, and speckle noise, 
it can be challenging to automatically segment the FH from 
US images. These issues make it difficult to segment fetal 
US images due to the blurred head, fetal skull interruption 
by US artifacts, and interference from structures that have a 
texture similar to that of the FH, like the uterine wall inter-
face and a lot of amniotic fluid [13–15].

Several existing techniques have been employed for FH 
segmentation from US images in the domain of computer 
vision applications, including multi-level thresholding, the 
Jaya algorithm, Chan-Vese [16], morphological operators, 
and texture maps [17]. However, these methods might not be 
able to detect FH in low-contrast US images. Other machine 
learning (ML) techniques, such as the random forest (RF) 
classifier [18], were applied for the detection of incomplete 
ellipses. However, it consumes more time to learn all the 
features and has a high misclassification rate. Recently, deep 
learning (DL) technology has been a popular research area 
to combine biomedical images with artificial intelligence 
in the domain of computer vision applications [19, 20]. 
Inside of DL, convolutional neural networks (CNNs) were 
the most popular network model for segmentation, espe-
cially in medical images [21]. Some of the representative 
CNN architectures include fully CNN (FCNs), referred to 
as Mini Link-Net [22], U-Net [23], and 3DV-Net [24]. The 
regression-based work regression CNNs, such as VGGNet 
and VGG16 [25, 26], are also used as a backbone network 
to extract patch characteristics for segmentation from the 

US images. Despite the advances in technology, automatic 
segmentation remains a challenging task due to the varying 
pixel sizes of fetal US images throughout all trimesters of 
pregnancy. Furthermore, there is a need for improvement in 
the effectiveness of current deep learning-based algorithms 
for extracting FH measurements.

Motivated by the above facts and existing studies, this 
paper proposes a DR-ASPnet model with robust ellipse fit-
ting to automatically segment and measure FH from US 
images. The main idea is to determine the complex loca-
tion of FH based on appearance and shape priors for seg-
mentation and the elliptical parameters from FH profiles for 
HC estimation. Three developed frameworks jointly learn 
appearance and shape features during training and testing. 
Then the REFLS approach with robust weight functions is 
used to increase the accuracy of the ellipse parameter solu-
tion. Hence, our segmentation model is greatly enhanced 
in terms of robustness and determines the best fit for HC 
estimation with high accuracy.

Main Contributions

We present a DR-ASPnet model with robust ellipse fitting 
for fetal US images. This model is able to determine the 
complex location of FH for segmentation and determine the 
elliptical parameters from FH profiles for HC estimation.
We present a HDR-DCNN network model for automatic 
FH segmentation. Our network model involves three 
developed frameworks:

•	 Firstly, the US images are explicitly fed into the 
complex density regression network to extract the 
appearance of black pixel information and determine 
the complex location of FH.

•	 Secondly, the depth map of the US image is explic-
itly fed into the hierarchical density regression net-
work to sufficiently extract shape information. Then 
retrain both features to locate the complex FH.

•	 Thirdly, both appearance features and shape features 
are used to train the deep CNN (DCNN) network to 
achieve the final segmentation result.

We present a measurement strategy using a REFLS 
approach to determine the ellipse parameters of FH and 
avoid incomplete ellipse problems for HC estimation.
Our proposed model validation results will show better 
than the other methods on the publicly available HC18 
US dataset.

The rest of the paper is organized as follows: the “Related 
Works” section reviewed several recent methods in the 
domain of fetal US images. The “Proposed Methodol-
ogy” section presents the proposed methodology for FH 
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segmentation and FH measurement, with a network frame-
work diagram elaborated in detail. Simulation results and 
analysis are presented in the “Experiments and Evaluation” 
section. Lastly, the overall conclusion is given in the “Con-
clusion and Future Scope” section.

Related Works

Several recent works carried out in the domain of US images 
for FH detection, measurement, and segmentation are dis-
cussed as follows: To avoid manual measurement of fetal 
HC, Li et al. [27] introduced an automatic ML method using 
RF and fast ellipse fitting (ElliFit) in US images. This initial 
knowledge is fed as input to the RF classifier. Then the shape 
of the HC ellipse is fitted for measurement using ElliFit. 
Whereas another author, Van den Heuvel et al. [28] offered 
an automated assessment of fetal HC measurement for all 
trimesters using ML techniques in two-dimensional (2D) 
US images. Thus, the method achieves superior results for 
all trimesters when simulated on a large dataset. However, 
the testing process was performed by manual annotation 
measurement. Another author, Skeika et al. [21], developed 
a DL based V-Net combination (VNet-c) architecture to seg-
ment the fetal skull and measure the HC in 2D US images. 
The combination strategy employed 3D V-Net as the base 
network of the fully convolutional neural network (V-Net 
FCN) to learn the features with segmentation accuracy. The 
architecture used eight steps to mitigate overfitting prob-
lems. Fiorentino et al. [29] introduced regression-based 
CNNs (R-CNNs) to solve the edge delineation problem for 
HC measurement in US fetal images. Two edge-localization 
structures were trained with different factors for edge-local-
ization tasks. Another author, Zeng et al. [30], presented 
a V-Net architecture-based deep supervised attention-gated 
(DAG V-Net) model in 2D US images. After obtaining fetal 
HC measurements through elliptical fitting, it is observed 
that the DAG V-Net model exhibits quicker convergence 
compared to the U-Net and V-Net models. Amini et al. [31] 
presented an automatic extraction method to determine the 
FH parameters using DL in multi-scale US images. The 
fetal extraction step used a deep link network (Deep-Link-
Net) model to segment the FH for three trimesters, reduc-
ing the parameters using a loss function. To increase the 
generalization ability of multi-source US data, Zhou et al. 
[32] introduced a Fourier domain adaptation (FDA)-based 
learning network to improve the segmentation performance 
of FH. The FDA approach was used to learn the target 
domain by avoiding complex adversarial training. Thus, the 
model provides adaptive migration parameters for the task 
of generalization.

From the above-reviewed articles, the existing methods 
have some limitations, such as incomplete ellipses, variable 

location of the head, and fluctuations due to FH dimensions 
over different trimesters in the available datasets. Also, vari-
ations in different pixel sizes lead to challenges in segmen-
tation performance during training. It is time-consuming 
due to the absence of specialized knowledge about different 
image conditions. Further, false localization, limited train-
ing features, and insufficient elliptical parameters lead to 
lower segmentation and measurement accuracy for fetal US 
images.

Proposed Methodology

This paper presents a DR-ASPnet model with a robust ellipse 
fitting method for FH segmentation and HC estimation in 
US images. Firstly, we highlight a clear view of significant 
features through image pre-processing and augmentation 
steps for training and testing a set of fetal US images. For 
automatic segmentation, the HDR-DCNN model integrates 
complex density regression and hierarchical density regres-
sion with deep convolutional network design. Then elimi-
nate small irregular structures and smooth the segmented 
output using post-processing. Lastly, we applied the REFLS 
approach to compute the HC of each US image and deter-
mine the best fitting position of FH according to the ellipti-
cal parameters. The methodological framework of the DR-
ASPnet model is shown in Fig. 1.

Data Description

The HC18 Grand Challenge [28] is a publicly available data-
set that involves the collection of fetal US images validated 
for the purpose of training and evaluating machine learn-
ing models for fetal biometric measurements. The dataset 
was created by the Department of Obstetrics database at 
the Radboud University Medical Center in Nijmegen, Neth-
erlands. A total of 1334 two-dimensional (2D) US images 
were obtained from 551 pregnant women at different stages 
of pregnancy. These images represent the standard plane and 
can be utilized for fetal HC assessment. The ground truth 
images in this dataset are medical US images of the head 
that have been manually labeled by human experts to provide 
accurate measurements of the head circumference. Using 
the random division approach, we randomly split the dataset 
into two subsets, usually in an 80:20 ratio for the training 
and testing sets, respectively, for three types of trimesters. 
The training set involves 999 images that split 165, 693, and 
141 images for the first, second, and third trimesters, respec-
tively, while the testing set involves 335 images that split 55, 
223, and 47 images for the first, second, and third trimes-
ters, respectively. Each 2D ultrasound image has a resolution 
of 840 × 500 pixels, and the size of each pixel varies from 
0.052 to 0.326 mm. As the benchmark for automatic image 
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segmentation, the training set also includes HC images that 
have been manually label-ed by expert radiologists. A seg-
mentation gold standard is, however, missing from the test-
ing set. The findings from the testing set need to be evaluated 
against HC18 in order to determine the DR-ASPnet model 
performed in the HC18 Challenge (https://​hc18.​grand-​chall​
enge.​org/). When dealing with multiple highly correlated 
US fetal images, we need to take into account the depend-
ency between the images during development and testing. 
To address the correlation between the images, we perform 
data pre-processing techniques, as described in the “Phase 

1: Image Pre-Processing and Augmentation” section. This 
helps reduce the influence of intensity variations across the 
images and makes them more comparable. Also, to intro-
duce more diversity into the dataset and reduce overfitting, 
we apply data augmentation techniques specifically designed 
for correlated data, as described in the “Phase 1: Image Pre-
Processing and Augmentation” section. Some of the sample 
images in the training set for three trimesters are illustrated 
in Fig. 2.

The DR-ASPnet methodological framework for FH seg-
mentation and HC estimation involves three main phases:

Fig. 1   Methodological framework for FH segmentation and HC measuremen

https://hc18.grand-challenge.org/
https://hc18.grand-challenge.org/
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Phase 1: Image Pre‑Processing and Augmentation

Initially, the obtained fetal US images from the database 
are categorized into three trimesters of scan images. In 
our work, we labeled trimester scans (three trimesters of 
pregnancy) manually from the entire dataset for testing and 
training conditions. In these stages, manual annotations are 
provided by the medical experts for diagnostic treatment. 
Medical experts involved in the interpretation and analysis 
of fetal US images may include individuals at various stages 
of their medical careers, such as medical students, residents, 
fellows, and board-certified physicians specializing in rel-
evant disciplines, like expert radiologists. In the context of 
medical experts and qualifications related to fetal US images, 
here are some common grades or qualifications: Residents 
undergo further training in a specific medical specialty, such 
as expert radiologists. During their residency, they work in 
hospitals or clinics under the supervision of attending phy-
sicians and gain hands-on experience in various aspects of 
patient care, including interpreting and analyzing medical 
images like fetal US images. A fellow is a physician who 
may undergo a fellowship in fetal medicine or maternal–fetal 
medicine. These fellowships focus on advanced training in 
the diagnosis and management of complex fetal conditions, 
including the interpretation of fetal US images. Fellows 
work closely with experienced specialists in the field and 
gain expertise in handling high-risk pregnancies and fetal 
abnormalities.

Normally, captured images have unique problems, such 
as blurred images over different trimesters and variations in 

different pixel sizes. To solve these issues, the pre-process-
ing phase is used to remove unwanted distortions, variable 
fluctuations, and a clear view of significant features from the 
US images using three processing steps.

(i)	 Normalization: Generally, the intensity range of US 
images is 0 to 255. To shift and rescale the US image 
pixel-wise intensity, we employed normalization pro-
cess through changing pixel intensity values within the 
range of 0 and 1 [33]. This process has the advantage of 
solving image pixel variations. The formula for express-
ing the normalization value (Nz) in the image as:

where Io is the original image value and IMIN and IMAX 
represent the minimum and maximum image values, 
respectively.

	 (ii)	 Resizing: The image size is 800 × 540 pixels. To 
simplify the burden of proposed model, the input 
images are uniformly re-sized into 512 × 512 pixel 
resolution for training process. After resizing, we 
applied a threshold technique to maintain the pixel 
values in an image to a specific range, usually 
between 0 and 255. In thresholding, we define a 
threshold value that separates the darker pixel val-
ues from the lighter pixel values in the image. We 
then rescale the pixel values by mapping the darker 

(1)Nz =
Io − IMIN

IMAX − IMIN

Trimester 1 Trimester 2 Trimester 3

(a) (b) (c)

(d) (e) (f)

Fig. 2   a–f Representation of US images and ground truth images from the HC18 dataset (where a–c represent the three 2D US images and d–f 
its respective ground truth images).
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pixel values to 0 and the lighter pixel values to 
255, with all other pixel values scaled proportion-
ally in between. This ensures that the pixel values 
in the resized image are within the range of 0 and 
255 [34].

	 (iii)	 Binary encoding: This step is often used to encode 
categorical variables into numerical values by 
encoding categories as integers and transforming 
them into binary code (i.e., encode the values [0 
and 1], where 0 denotes black pixels and 1 denotes 
white pixels). During the training process, we rep-
resent the class in black pixels as (1, 0) and white 
pixels as (0, 1) [35]. This step has the advantage of 
reducing the curse of dimensionality.

In the case of fetal US images, data augmentation is used 
to create additional training samples that simulate variations 
in image acquisition conditions and fetal positions [36]. The 
augmentation operation involves center flipping, horizontal 
flipping, rotation, brightness, and contrast adjustment in the 
US images. In this case, center flipping involves flipping 
the image around its center point. It can simulate different 
fetal positions along the sagittal plane. Horizontal flipping 
involves flipping the image along the horizontal axis. This 
can simulate different fetal positions along the transverse 
plane. Brightness and contrast adjustments are used for dif-
ferent lighting conditions.

•	 Flipping: Center f lip = −10o to +10°; horizontal 
flip = −20° to +20°

•	 Brightness: −20 to +20%
•	 Contrast: ±10% to ± 20%
•	 Rotation: Randomly rotated up to 10° to 15o

Phase 2: Automatic Segmentation

This step applied the HDR-DCNN model as an extractor 
process that takes appearance and shape prior features of 
fetal US images as input and represents a binary mask of 
segmented FH as output. There are three network models in 
the proposed HDR-DCNN model:

(i)	 Appearance-Based Complex Density Regression Ini-
tially, the appearance of black pixel features is extracted 
from the US images using complex density regression. 
Next, we validate US images to determine the com-
plex location of FH with prediction error. In this, the 
complex density regression network model involves 
three blocks: convolutional layers, dense layers, and 
the density regression layer. A series of convolutional 
blocks are used to extract appearance features at dif-
ferent scales. The output of the convolutional blocks 
is flattened and fed into two dense layers to extract 
high-level features that capture complex relationships 
between appearance features. Then the output of the 
dense layers is fed into a complex density regression 
layer that estimates the distribution of the fetal contour 
in polar coordinates. This layer uses complex-valued 
weights to capture both magnitude and phase informa-
tion, which is employed to estimate the final density 
map. The design of the complex density regression 
network allows for the unified integration of feature 
extraction into the density regression process, thereby 
eliminating the need for additional feature extraction 
methods. The framework of complex density regression 
is shown in Fig. 3.

(i) Appearance Based Complex Density Regression:

1

Fig. 3   Framework of complex density regression (L1)
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The given H ∈ ¥
U×V be the testing image and the train-

ing complex density regression function is denoted as 
f (H;Θ) , where U × V represents the number of rows and 
columns in the image, respectively. The corresponding 
function is used to estimate the density map for H, which 
is represented as 

∧

D= (f (H;Θ)) . Thus, the complex location 
of the appearance prior in the testing images is estimated 
(
∧

Cl) in the below equation:

where the expression 
[
∧

D= L1f (H;Θ)

]

i,j

  denotes the esti-

mated density map of the pixel at location (i,j) in the image 
H.

The prediction error for each location in the appearance 
prior is estimated by:

where:

and

(2)
∧

Cl=

U∑
i=1

V∑
j=1

∧

Di,j =

U∑
i=1

V∑
j=1

[
∧

D= L1(f (H;Θ))

]

i,j

(3)Qm = qm +
∧
q

m

qm =
1

K

∑K

k=1
qk

m

∧
qm=

√
1

K

∑K

k=1

(
qk

m
− qm

)2

where K represents the collection of US fetal anatomy at dif-
ferent trimesters, as well as annotated images that highlight 
important landmarks and structures. Some common terms 
and definitions related to fetal anatomy for three different 
trimesters in the context of US imaging are outlined in the 
Tables 1, 2, and 3.

	 (ii)	 Appearance and Shape-Based Hierarchical Den-
sity Regression  Hierarchical density regression 
(HDR) framework is used to capture shape features, 
such as the shape and size of the FH features, in a 
hierarchical manner and to generate a shape repre-
sentation of the whole model based on density map 
information. The hierarchical structure means a 
sequentially connected density regression model. For 
preparing the training samples, there is a correspond-
ing density map for each image. In this, each density 
regression is trained on appearance features from 
US images and shape features from density maps. 
Then retrain the complex head location of fetal with 
the new shape features. Finally, the learned density 
regression of each iteration is applied to hierarchi-
cally locate the head during the testing process. The 
framework of HDR is shown in Fig. 4.

The hierarchical representation for density regression 
is obtained by fusing the target shape representations from 
various skull feature scales in the task-specific prediction 
module. Following this, a multilayer perceptron (MLP) is 
used to leverage the hierarchical representation for the den-
sity regression task. The blocks used in the HDR task for 

Table 1   Terms and definitions related to fetal anatomy for first trimester (weeks 0–13)

Terms Definitions

Gestational sac A fluid-filled structure in the uterus that surrounds and supports the developing embryo
Yolk sac A small sac attached to the embryo that provides nourishment in the early stages of pregnancy
Embryo The developing organism from conception until the end of the 10th week of pregnancy
Fetal pole The early visualization of the embryo with distinct features, such as a developing head and body
Nuchal translucency A measurement of fluid accumulation at the back of the baby's neck, used for screening purposes
Placenta An organ that develops during pregnancy and provides oxygen and nutrients to the fetus
Fetal heartbeat The rhythmic contractions of the fetal heart, usually detected using Doppler ultrasound

Table 2   Terms and definitions related to fetal anatomy for second trimester (weeks 14–27)

Terms Definitions

Amniotic fluid The fluid that surrounds the fetus in the amniotic sac. It helps protect and cushion the fetus
Fetal movements The movements felt by the mother as the baby starts to develop coordinated muscle activity
Fetal organs The major organs, such as the heart, lungs, brain, kidneys, and liver, that continue to develop
Sex determination The ability to determine the biological sex of the fetus through ultrasound imaging
Fetal growth Measurements of the fetus, including head circumference, abdominal circumference, and femur length
Fetal position The orientation of the fetus within the uterus, typically described in terms of head or breech presentation
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extracting shape features include stacked convolutional lay-
ers, a max-pooling layer, and an MLP layer. The weights 
and biases in the MLP layer are learned during training 
using the backpropagation algorithm [37]. The inputs 
of three blocks can then be represented as �1 =

(
H;Θ1

)
 , 

�2 =
(
H;Θ1,Θ2

)
 and �2 =

(
H;Θ1,Θ2,Θ3

)
 . For each input 

φn (where, n = 1,2,3), the corresponding parameter vector 
�n defines the output of the nth HDR as a high-level features 
in the density map ( L2

(
Gn

(
�n;�n

))
).

Based on density feature maps in Eq. (2), we construct a 
probability vector, denoted as Pv ∈ DK×1 , which estimates 
the likelihood of each organ’s shape being representative 
of network structures. The formulation of Pv is based on 
this process:

(4)Pv = Softmax

(
L2

(
Gn

(
�n;�n

))[
1 − NZ

[
K∑

k=1

Sp,q

]])

where Nz is the normalize and Sp,q = ‖sp − sq‖M1

 represents 
the distance matrix of shape features (p,q).

	 (iii)	 Appearance and Shape-Based DCNN Classi-
fier Based on the architecture of CNN [38], we apply 
the DCNN model to combine the features of complex 
head location and obtain the segmentation map of 
an accurate fetal head without loss. The appearance 
and shape features of complex head locations are fed 
as input to the DCNN for training. Both features are 
employed to achieve the final segmentation result 
of the fetal head. Following the convolution layer, 
nonlinear feature maps are obtained by applying a 
nonlinear activation function. The DCNN architec-
ture uses the simplest nonlinearity, which is ReLU, 
and has been demonstrated to be highly effective for 
segmentation tasks. Transpose convolutional layers 
are used to increase the spatial resolution of the fea-
ture maps. According to the parameters, the input 

Table 3   Terms and definitions related to fetal anatomy for third trimester (weeks 28–42)

Terms Definitions

Braxton Hicks contractions Irregular contractions of the uterus that may be felt by the mother in preparation for labor
Fetal presentation The position of the baby’s body parts in relation to the birth canal, such as head-down (cephalic) or breech
Fetal weight Estimation of the baby’s weight through ultrasound measurements
Fetal position The orientation of the fetus within the uterus, typically described in terms of engagement and station
Placental position The location of the placenta within the uterus, which can affect delivery options and complications

2

Fig. 4   Framework of hierarchical density regression (L2)
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feature map is reduced in size through the pooling 
layer. A FC layer is employed to transform the feature 
maps into output class probabilities. This layer uses 
softmax nonlinearity to convert the 2D feature maps 
into a 1D feature vector.

The appearance and shape features ( L1(f (H;Θ))

,L2
(
Gn

(
�n;�n

))
 ) in the feature map (Fmap) are represented 

as neurons, expressed as:

where * denotes the convolutional operation, Bm, Pj and Ymj 
and represent the bias, input plane, and convolutional kernel, 
respectively.

ReLUfunctions (0, Im) result in the computation of the 
non-linear activation map as f (m) = MAX

(
0, Im

)
 . For each 

activation in a ma Am , the pooling layer computes the output 
P(L1, L2) with a size of PL × PL as follows:

Although more complex methods may improve perfor-
mance, we utilize straightforward technique based on DCNN 
model to produce segmentation maps from point annotations 
in this research. Set Msegmentation ∈ [0, 1]

h×w for generating 
the segmentation maps where the height and width of the 
image are represented as h and w, respectively, expressed as:

where the matrix Gx (a) is a square matrix of size x × x that 
has an a-centered core. In matrix MSegmentation, the pixels 
corresponding to the foreground and background regions 
are denoted by ones and zeros, respectively. To ensure that 
crucial contextual details are not lost, we chose the value of 

(5)Fmj = Bm +
∑

j

Ymj ∗ Pj

(6)P(L1, L2) = MAX
(
Am(L1 + PL, L2 + PL)

)

(7)MSegmentaion(a) =

K∑
k=1

�
(
a − ak

)
∗ Gx(a)

x to be 25 for the experiments. This ensured that the segmen-
tation map had more pixels characterizing a particular fetal 
head in an image than the density map.

The output target class of fetal head in the appear-
ance and shape features ( L1(f (H;Θ)),L2

(
Gn

(
�n;�n

))
 ) are 

trained together to minimize the combined loss function, 
expressed as:

where the loss function loss(Θ) calculates the average mean 
square errors (MSE) between the original US image and the 
estimated density map obtained through complex density 
regression (L1). Similarly, the loss function �n

(
Θ1, ....,Θn�n

)
 

calculates the average MSE between the high-level segmen-
tation map generated by the DCNN and the low-level den-
sity map calculated by the n-th HDR (L2). Skip connections 
allow the network to combine low-level and high-level fea-
tures by skipping over some layers and connecting to later 
layers in the network. The supervision strength under the 
n-th DCNN is regulated by the parameter βn, which ranges 
from 0 to 1. The loss function Closs is computed through the 
use of momentum stochastic gradient descent (SGD) tech-
nique [39]. The parameter n is updated during the i-th itera-
tion, which is denoted by Θ(i)

n
 . The momentum parameter λ 

determines the impact of the previous iteration's outcome, 
while the learning rate η regulates the speed of parameter 
updating. As lossn takes values from 1 to n, the gradient 
with respect to the model parameters Θn is solely dependent 
on Θn and Θz . The framework of DCNN classifier is shown 
in Fig. 5.

(8)

C
loss(L1, L2) = loss(Θ) +

3�
n=1

�
n
loss

n

�
Θ1, ....,Θ

n
,�

n

�

+ �

�
‖Θ‖2

+

3�
n=1

‖Θ
n
‖2

�
, n = 1,2, 3,

Fig. 5   Framework of DCNN 
segmentation
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Phase 3: Fetal Head Measurements

This phase involves post-processing and HC estimation steps 
to enhance the accuracy of fitting parameters of FH profiles 
for HC estimation.

Post‑Processing

Since the segmented results are still prone to incomplete 
problems like blurred FH, different artifact are mistakenly 
segmented as FH. Therefore, this work employed post-
processing operations using contrast enhancement filter-
ing with a morphological operation model to smooth the 
region and remove unnecessary artifacts from the segmen-
tation results. The operations include area opening, dila-
tion, and filling small gaps. The approach of combining 
bottom hat (BT) and top hat (TT) contrast enhancement 
filters (EF) is utilized to effectively distinguish the fore-
ground region from the background in fetal US imaging 
(FI) [40], expressed as:

	 (i)	 Area opening operation: Area opening can be use-
ful in FH post-processing because it can eliminate 
small regions that may have been falsely included in 
the segmentation due to noise or other artifacts in the 
image. Consider r be the number of target classes of 
FH, A be the average, Mi and Mj represent the major 
and minor axis lengths of the FH, respectively. The 
pixel value Pv is expressed as:

where is the round of radii values.
	 (ii)	 Dilation operation: Dilation is a morphological 

operation used to expand the boundaries of the seg-
mented FH filling in small gaps and smoothing the 
edges. Consider Mmin and Mmax be the minimum 
value of major axis length and maximum value of 
the minor axis length of the FH in the fetal US image, 
expressed as:

	 (iii)	 Fill hole operation: The fill-hole operation is a mor-
phological operation that is used to fill small gaps 
that may be present in the segmented FH. These 
gaps may occur due to the presence of noise or other 
artifacts in the fetal US image. Thus, the post-pro-
cessing steps obtain a smoothed segmented result, 
leading to improved quality outcomes for the image 
and thereby reducing the issues of overlapping and 
over-segmentation.

(9)EF = FI + TT − BT

(10)Pv = Rd

(
mean

(
A_Mi, A_Mj

))

(11)Dl = Rd

(
MIN

(
Mmin, Mmax

))

Head Circumference Estimation

After post-processing, the HC can be estimated from the FH 
points in the US images. Numerous approaches to handling 
the HC have been proposed, but most of them assume that the 
FH has an irregular shape, even though FH profiles have slight 
deviations despite their irregular appearance. To enhance the 
accuracy of fitting parameters for FH profiles, the elliptic 
model is employed, as it can better represent the shape and cir-
cumference measurements of FH [41]. This paper applies the 
robust ellipse fitting-based least square (REFLS) method based 
on elliptic hypothesis to avoid the effect caused by incomplete 
ellipse problems and determine the ellipse parameters such 
as orientation angle, semi-axis, center coordinates, and inner 
and outer ellipse scaling parameters for HC estimation. The 
REFLS method is used to estimate the head circumference of 
an individual from an US image. The method involves fitting 
an ellipse to the outline of the head in the image.

For the purpose of the sliced HC-point, we considered 
them as ellipses and utilized the REFLS algorithm to deter-
mine the best fitting points. To prevent the trivial solution, 
set 

[
E1, E2, E3, E4, E5, E6

]T
= 0[6×1] , the constraint E6 = −1 is 

imposed. It should be noted that the value of E6 is not influ-
enced by the edge point (a,b), expressed as:

The principle of least square in the HC data points are 
expressed as:

where C is the constant value and W  denotes the weight 
matrix equivalent to the edge points.

According to the model parameters, we introduced the 
REFLS approach with robust weight function Wf to increase 
the accuracy of the ellipse parameter solution as follows:

where the residual error of the measurement is denoted by 
ef  , while the standard deviation of the measurement error is 
represented by �0 . The modulation coefficients for the robust 
threshold are t0 and t1, and the standardized residuals are 
denoted by |||ef

||| =
|ef |
�0

.
By utilizing elliptic coefficients such as the two semi-axes 

(s1, s2) (i.e., half long and half-short axis of the ellipse), ori-
entation (ϕ), center coordinates (x0, y0), and the inner and 
outer ellipses (IE, OE), the standard equations for the HC 
measurements fitting in the ellipse can be achieved using the 
following formulas:

(12)J =

(
aTWa

)−1(
aTWC

)

(13)Wf =

⎧
⎪⎪⎨⎪⎪⎩

1
���ef

��� ≤ to
t0(t1−�ef �)
�ef �(t1−t0)

t0 ≤
���ef

��� ≤ t1

0
���ef

��� ≥ t1
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Experiments and Evaluation

In this section, we evaluate the efficacy of our DR-ASPnet 
approach through a series of experiments. We first provide 
an overview of the implementation details, hyper-parame-
ters, and evaluation metrics. Next, we present visual com-
parison results for the proposed and existing methods with 
other state-of-the-art methods. Finally, we report our find-
ings on the HC18 dataset and provide quantitative results in 
terms of correlation and regression analysis.

Implementation

This section outlines the implementation process of the DR-
ASPnet model in terms of hardware, hyper parameters, and 
evaluation metrics.

Hardware

The experiments in this study were conducted using a graphics 
workstation equipped with an Intel(R) Core(TM) i7-3840QM 
CPU and 64 GB RAM. The widely used public PYTHON 
library based on Tensorflow 2.6.0 and Keras 2.4.0 were 
selected for the evaluation of the DR-ASPnet framework.

Hyper Parameters

Some of the hyper-parameter configurations have been 
described in the “Data Description” section. The network 
configuration parameters are shown in Table 4.

(14)

IE =

[(
a − x0

)
cos� +

(
b − y0

)
sin�

]2

s2

1,1

+

[
−
((

a − x0

)
sin� +

(
b − y0

)
cos�

)]2

s2

2,1

= 1

(15)

OE =

[(
a − x0

)
cos� +

(
b − y0

)
sin�

]2

s2

1,2

+

[
−
((

a − x0

)
sin� +

(
b − y0

)
cos�

)]2

s2

2,2

= 1

(16)

Ecoeff = 4
(
s1 + s2

)
− 4

[
4 − � +

0.1218
(
s1 − s2

)2

(
s1 + s2

)2
+ 2.8s1s2

]
s1s2

s1 + s2

(17)HCE =
Ecoeff

�

(
IR + OE

)

Evaluation metrics

We considered seven metrics, such as DSC, Handoff dis-
tance (HD), mean ntersection over union (mIoU), coef-
ficient of variation (CV), difference (DF), AD, and mean 
absolute error (MAE) to evaluate the efficiency of the DR-
ASPnet model.

	 (i)	 DSC [42]: It is also known as the dice coefficient 
or dice index, which is a statistical measure used to 
evaluate the similarity between two areas (segmen-
tation area and measurement area). The DSC ranges 
between 0 and 1, with a value of 1 indicating a per-
fect overlap or complete agreement between the two 
areas, and a value of 0 indicating no overlap or disa-
greement.

	 (ii)	 HD [43]: It is the maximum distance calculated by 
Euclidean distance, where the segmentation and 
measurements are defined by area contours.

	 (iii)	 MIoU [44]: The mean IoU computes the average 
IoU across multiple segmented areas (FH and 
background measurement). It provides an overall 
measure between the automated segmentation algo-
rithms aligns with the ground truth annotations. A 
higher mean IoU value indicates better segmenta-
tion performance, suggesting a higher degree of 
overlap and accuracy between the automated and 
manual segmentations.

	 (iv)	 CV [45]: This is a statistical measure used to 
assess the relative variability of a set of measure-
ments (standard deviation and mean value differ-
ences between segmentation area and measurement 
area). A lower CV value indicates less variability 
and greater reliability in the segmentation or meas-
urement outcomes, suggesting more consistent and 
accurate results. Conversely, a higher CV value 
implies greater variability and less reliability, indi-
cating potential inconsistencies or errors in the seg-
mentation or measurement process.

	 (v)	 DF [28]: The DF and AD metrics are often employed 
to assess the degree of variation or deviation between 

Table 4   Configuration parameters

Parameters Values

Epochs 20 for each iteration
Epoch time 65 min
Total running time 2 h
Optimizer SGD [39]
Learning rate 0.001
Batch size 32
Drop our ratio 0.5
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the manual annotations and the automated segmenta-
tion results for HC measurement. Smaller absolute 
differences indicate closer agreement and higher 
accuracy, while larger absolute differences suggest 
greater discrepancies or errors.

	 (vi)	 MAE [46]: This metric can be utilized to evaluate 
the dissimilarity between the predicted and measured 
HC for the number of samples. It is calculated as the 
average of the absolute differences between the cor-
responding values. A smaller MAE value indicates 
a closer agreement between the predicted and meas-
ured results, suggesting higher accuracy. Conversely, 
a larger MAE value indicates greater discrepancies 
or errors between the two sets of values, indicating 
lower accuracy.

Experimental Results and Analysis

This section presents the performance comparison results of 
the DR-ASPnet approach based on four sub-sections: visual 
comparison results, comparison between different trimes-
ters, comparison with existing state-of-the-art methods, and 
results on correlation and regression analysis for qualitative 
and quantitative evaluation.

Visual Comparison Results

The performance results of the DR-ASPnet approach are 
compared with existing methods such as mask regression 
CNN (Mask R-CNN) [47], Mini Link-Net [22], scale atten-
tion feature pyramid etwork (SAFNet) [48], scale attention 
pyramid deep neural network (SAPNet) [49], R-CNN [25], 
DAG V-Net [30], RR-CNN [29], distance-field regression 
version of Mask-RCNN (Mask-R2 CNN) [50], ensemble 
transfer learning model (ETLM) [51], and Deep-Link-Net 
[31] for segmentation accuracy and HC estimation accuracy 
fetal in US images.

To statistically analyze the significant differences in FH 
measurements between positive and negative points, the 
Wilcoxon signed-rank test [52] is a non-parametric test that 
compares the medians of the paired measurements and deter-
mines if there is a statistically significant difference. The 
paired measurements of FH sizes are gathered to calculate 
positive and negative points for the proposed DR-ASPnet 
method and existing methods such as Mask R-CNN, Mini 
Link-Net, SAFNet, SAPNet, R-CNN, DAGV-Net, RR-CNN, 
Mask-R2 CNN, ETLM, and Deep-Link-Net. Ensure that 
each pair corresponds to the same fetus. Then state the null 
and alternative hypotheses between positive and negative 
points. We performed a Wilcoxon signed-rank test to exam-
ine the differences in FH measurements between positive 
and negative points. The sample consists of N participants. 
The test statistic was calculated as X, resulting in a p-value 

of Y. As the p-value was less than the significance level of 
0.05, we reject the null hypothesis and conclude that there is 
a significant difference in FH measurements between posi-
tive and negative points. From the analysis, the best results 
are determined by a Wilcoxon signed-rank test that indicates 
medium, large, or small effect sizes for the proposed and 
existing methods, as shown in Figs. 6, and 7.

The qualitative comparisons for the automatic FH seg-
mentation and HC estimation between the DR-ASPnet 
model and existing methods are shown in Figs. 6, and 7. 
The qualitative findings reveal that the DR-ASPnet network 
outperforms other methods in handling incomplete regions 
of the head while generating smooth segmentations for three 
different trimesters, as demonstrated in Fig. 6. Furthermore, 
saliency maps highlight inaccuracies in estimations by 
regression models, which are misled by high-intensity pix-
els above the head, resulting in lower predicted HC values. 
Figure 7 illustrates that the DR-ASPnet model, in certain 
cases, relies on a significant number of contour pixels to esti-
mate the HC and effectively extracts appearance and shape 
features from the head contour of US images.

Comparison Between Different Trimesters of US Images

The US images captured during the first trimester are often 
riddled with noise, hazy regions, and unclear skull borders. 
Existing regression-based CNN models can lose their way 
in some areas, confusing other outlines with skulls. Dur-
ing the second trimester, there is a sudden jump in the fetal 
skull boundary, causing segmentation confusion. In the 
third trimester, black templates covering other fetal data in 
the dataset make the discontinuous skull patches in the US 
image more pronounced and irregular. We encountered these 
difficulties while testing the DR-ASPnet method.

The evaluation metrics analyze FH measurements 
across trimesters of US images to investigate if there are 
significant differences in various metrics (DSC, DF, AD, 
HD, MAE, and mIoU). This analysis employed an analy-
sis of variance (ANOVA) test [53] to compare the means 
of the measurements between the trimesters for the pro-
posed and existing methods. A dataset consisting of FH 
measurements (e.g., head circumference) was collected 
from US images. The data were categorized according to 
the trimesters: first trimester (T1), second trimester (T2), 
and third trimester (T3). The ANOVA test was selected 
to determine if there were significant differences in the 
means of the metrics among the trimesters. The ANOVA 
test revealed a significant difference in mean HC among 
the trimesters (F-value = [F-value], p-value < 0.05). The 
statistical analysis using ANOVA revealed significant dif-
ferences in all the measured FH metrics across the trimes-
ters. These findings suggest that the development of FH 
dimensions varies significantly as pregnancy progresses. 
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Table  5 presents the performance of the DR-ASPnet 
model after post-processing and elliptical fitting on HC18 
testing sets. The DR-ASPnet approach showed excellent 
accuracy, with a DSC of over 98.86% in the third trimes-
ter. In this study, the graphics workstation used achieved 
an average running time of 5.4 ms for the DR-ASPnet 
automated fetal HC segmentation and measurement when 
tested on US images.

Figure 8 indicates that the DR-ASPnet FH segmenta-
tion model is accurately fitting the data with less training 
and validation loss. The learning curves plot the DR-ASP-
net model loss on the y-axis and the number of training 
epochs on the x-axis. The training loss refers to the error 
between the model’s predicted output and the measured 
labels during the training phase. The validation loss, on 
the other hand, measures the error on a separate validation 
set for the model’s generalization performance. Using the 
DR-ASPnet model, both the training and validation losses 
are decreasing and stabilizing at low values, which may 
indicate that the model is learning the underlying patterns 
effectively.

Comparison with Existing State‑of‑the‑Art Methods

The qualitative evaluation of the DR-ASPnet model is 
compared with existing state-of-the-art methods such 
as Mask R-CNN, Mini Link-Net, SAFNet, SAPNet, 
R-CNN, DAGV-Net, RR-CNN, Mask-R2 CNN, ETLM, 
and Deep-Link-Net in terms of DSC, DF, AD, HD, 
MAE, and mIoU metrics.

The evaluation metrics analyze the segmentation accu-
racy and HC estimation accuracy in US image data and 
investigate if there are significant differences in these met-
rics. The analysis will employ statistical tests to compare 
the performance of segmentation and HC estimation across 
different methods of the proposed DR-ASPnet model and the 
existing Mask R-CNN, Mini Link-Net, SAFNet, SAPNet, 
R-CNN, DAGV-Net, RR-CNN, Mask-R2 CNN, ETLM, and 
Deep-Link-Net. A dataset of US images, along with corre-
sponding ground truth annotations and HC measurements, 
was collected. Various algorithms were applied to obtain the 
segmented area. HC estimation algorithms were then used to 
estimate the HC from the segmented area. The segmentation 
accuracy and HC estimation accuracy were evaluated using 
appropriate metrics (DSC, DF, AD, HD, MAE, and mIoU). 
Statistical tests are conducted to determine if there are sig-
nificant differences in the performance of segmentation and 
HC estimation methods. The statistical test revealed a signif-
icant difference in the HC estimation accuracy and segmen-
tation accuracy between the proposed and existing methods 
(p-value < 0.05). Pairwise comparison tests are performed 
to identify the specific differences among the methods. The 
statistical analysis indicates significant differences in both 
segmentation accuracy and HC estimation accuracy across 
the tested methods. These findings suggest variations in the 
performance of different algorithms for segmenting area and 
estimating HC in US image data, as shown in Table 6.

From Table 7, the evaluation result of the DR-ASPnet 
model achieves better results than other methods in terms 
of FH segmentation accuracy and HC estimation accuracy 
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Fig. 6   Visual comparison results for the automatic FH segmentation: 
first row represents the sample input images from three types of tri-
mesters on HC18 dataset; first column represents the segmentation 
outputs for the DR-ASPnet method and exiting methods, where the 

segmented fetal head region after discarding numerous volumes and 
different colors indicates contours for each comparison models. The 
best results are shown by the DR-ASPnet model.
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Fig. 7   Saliency map results for 
the HC estimation values: first 
row represents the final FH 
contours for three trimesters, 
where the red line indicates 
the boundary of the segmented 
image; first column represents 
the HC estimation outputs for 
the DR-ASPnet method and 
exiting methods. The best results 
are shown in bold font. The 
yellow color denotes positive 
points, and blue color denotes 
negative points
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metrics. The regression models such as Mask R-CNN, 
R-CNN, RR-CNN, and Mask R2-CNN are sensitive to vari-
ations in image quality, and their performance may degrade 
when applied to low-quality images with artifacts, noise 
encountered in clinical practices. Such models are trained 
on one set of measurement techniques due to variability in 
fetal HC measurement, leading to reduced accuracy of the 
predictions. The list of other remaining methods, such as 
the ETLM model, may not fully account for image vari-
ability, resulting in potentially inaccurate predictions. Then, 
the Mini Link-Net model results in reduced capacity for 
capturing complex and fine-grained features in US images. 
These results lower segmentation accuracy and HC estima-
tion accuracy. Among these facts, the DR-ASPnet model 
obtains a higher accuracy of 98.86% and mIoU of 98.73% 
than other methods.

The advantages of the proposed DR-ASPnet model are as 
follows: (a) it is specifically designed for segmentation and 
estimation tasks, making it well-suited for accurately delin-
eating fetal US images. The model’s deep architecture learns 
complex features from the data, leading to improved seg-
mentation accuracy, which is reflected in higher DSC scores. 
(b) The combination of deep CNNs and robust ellipse fitting 
leads to enhanced segmentation accuracy. Deep CNNs are 
adept at learning intricate features from medical images, 
while robust ellipse fitting helps to accurately delineate the 
shape of fetal structures, leading to improved segmentation. 
(c) The integration of shape priors and robust ellipse fit-
ting could potentially reduce false positives and negatives in 

segmentation. The method helps the algorithm make more 
informed decisions in the segmentation mask, which con-
tributes to better estimation results.

Ablation Experiment

In this part, we validate the effectiveness of each key compo-
nent used in our proposed DR-ASPnet model. The ablation 
study involves an ablation experiment on the structure of the 
baseline regression networks (Mask R-CNN, R-CNN, RR-
CNN, and Mask-R2 CNN). All ablation experiments were 
conducted on the HC18 dataset.

To prove the effectiveness of the proposed DR-ASPnet 
model, we report the quantitative comparison results of our 
model with other related architectures. The results are pre-
sented in Table 8. R-CNN combines region proposal genera-
tion with CNN-based feature extraction. While R-CNN can 
be adapted for segmentation tasks, it may not be the most 
efficient choice for real-time or densely segmented medi-
cal imaging like fetal US due to its time-consuming region 
proposal step. Mask R-CNN provides pixel-level segmenta-
tion masks for each detected object. This can be valuable in 
applications like fetal US, where precise delineation of fetal 
structures is important. Recurrent mask (Mask R-CNN and 
Mask-R2 CNN) connections allow the network to capture 
temporal dependencies, which might be useful in fetal US 
images where structures change over time. Residual con-
nections help alleviate the vanishing gradient problem and 
enable the training of deeper networks. From the overall 

Table 5   Performance results of 
DR-ASPnet model segmentation 
and measurements on HC18 
dataset in terms of evaluation 
metrics

Trimesters of US images Evaluation metrics

DSC (%) DF(mm) AD (mm) HD(mm) MAE (mm) mIoU(%)

First trimester 98.1 0.32 1.527 0.875 1.90 98.03
Second trimester 98.60 −0.122 1.875 1.254 1.92 98.56
Third trimester 98.86 –0.347 2.536 2.364 1.94 98.71

Fig. 8   Training loss and valida-
tion loss of the DR-ASPnet 
model
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results, the proposed DR-ASPnet model achieves the best 
performance among other models in terms of DSC, HD, and 
pixel-level accuracy (PA) metrics.

Results on Correlation and Regression Analysis

In this section, we evaluate the fetal biometric parameter 
of HC using the DR-ASPnet method on the training and 
testing sets of different trimesters under the HC18 dataset. 
A Bland–Altman plot, a scatter plot, and a box plot were 
employed to perform correlation and regression analysis 
between the measured and predicted results.

The Bland–Altman plots for the fetal biometric param-
eter HC, which is generated for clinical validation using 
DR-ASPnet method on the training and testing sets of dif-
ferent trimesters, are displayed in Fig. 9. In the context 
of fetal HC parameter, each data point on the Bland–Alt-
man plot represents the difference between the measured 
and predicted HC values on the training and testing sets of 
the HC18 dataset. In addition, Bland–Altman plots often 
include reference lines to indicate the mean difference 
and the limits of agreement. The mean difference line is 
a horizontal dashed line represents the average difference 
between the measured and predicted HC values. Scatter 

plot compares the measured and predicted fetal HC values 
for the DR-ASPnet model on the training and testing sets 
of different trimesters, which is shown in Fig. 10. Each data 
point on the box plot of absolute error values represents the 
absolute difference between the measured fetal HC and the 
true value and is used as the data by the DR-ASPnetmodel, 
which is shown in Fig. 10.

From Figs. 9, 10, and 11, the overall plotted results show 
that the DR-ASPnet model obtains a strong correlation 
between measured and predicted HC values. It provides 
visual insights into the agreement between the measured and 
predicted HC values for testing and training sets. Table 9 
shows the correlation and regression fit values for the HC18 
dataset. The statistical analysis of the relationship across the 
three trimesters revealed variations based on the modeling 
of HC absolute error. When HC absolute error was repre-
sented as a z-score, a significant association with trimester 
classes emerged in the first, second, and third trimesters 
(p = 0.005 and p < 0.0001, respectively). However, when HC 
absolute error was assessed using percentiles (3 categories), 
trimester classes displayed no significant association with 
HC absolute error in the second trimester (p = 0.42), while 
the association remained significant in the third trimester 
(p < 0.0001). The distributions of HC absolute error for the 
second and third trimesters within each trimester category 
are illustrated in Fig. 11.

Table 8   Ablation study on different architectures (where the bold 
indicates best results)

Mean DSC Mean HD Mean PA

R-CNN 0.821 ± 0.115 3.514 ± 0.862 0.916 ± 0.047
RR-CNN 0.866 ± 0.115 2.452 ± 0.895 0.945 ± 0.042
Mask R-CNN 0.883 ± 0.158 2.321 ± 0.887 0.962 ± 0.041
Mask-R2 CNN 0.945 ± 0.109 1.390 ± 0.874 0.926 ± 0.040
DR-ASPnet 0.986 ± 0.081 1.230 ± 0.864 0.987 ± 0.039

Fig. 9   Bland–Altman plots for fetal HC parameter. The differences 
are often plotted as positive and negative values (in mm)

Fig. 10   Scatter plots for fetal HC parameter

Table 9   Correlation and regression values on the training and test-
ing sets of different trimesters. (CC denotes the correlation analysis, 
Y represents the regression analysis, AE is the absolute error, where 
Y = p x + q, CC = 1, p = 1 and q = 0)

Trimesters of US images HC

Training set (999 images) CC = 1; p = 1.004; q =  −0.566
Testing set (335 images) CC = 0.99; p = 1.003; q =  −0.526
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Discussion

This section presents a deep analysis of existing state-
of-the-art methods and the proposed method, which lies 
in the broader context of the relevant literature compari-
son results using US images. At first, the CAD system 
observes the initial knowledge of ultrasound scanning 
and GA to locate the FH. Further, the center line of the 
fetal skull is detected using the phase symmetry approach 
[27]. The first GA was then calculated using the crown-
rump length (CRL) measurement. Here, the center and 
margin of the fetal skull are found using three HC meas-
urement methods. Last but not least, the HC from the 
detector output was measured using an elliptical fit [28]. 
Further, HC measurement work has been extended using 
deep learning (DL) techniques. Then, some mislabeled 
US images are smoothly polished using ellipse fitting 
during post-processing [21]. Two edge-localization tasks 
were used [29]: (1) location and center part of the FH 
are determined by region CNN structure trained based 
on transfer learning; (2) HC is accurately delineated 
using R-CNN trained based on distance-field. However, 

HC pixel position poses challenges to convergence per-
formance during training. Hence, the obtained results 
achieve the highest DSC and the lowest mean absolute 
difference (MAD) error [21, 27–29].

Following the common processes of edge detection, 
morphological processing, and ellipse fitting, the DAG 
V-net model used two trained models: deep supervision 
and attention gate mechanisms for automatic FH segmenta-
tion. However, it is important to note that the DAG V-Net 
model has some limitations, including a narrow scope of 
cases used for training and lower accuracy during the first 
trimester of pregnancy [30]. From the evaluation results, 
the Deep-Link-Net-based HC measurement achieves bet-
ter efficiency in terms of MAD and Handoff metrics [31]. 
Four source datasets (unseen) and target datasets (seen) were 
adopted using the synergistic learning method [32] to solve 
the intra-class inconsistency segmentation [30–32]. Among 
these facts, the evaluation results from these methods [21, 
27–32] have suffered from many problems, such as the fact 
that whole skull boundaries are difficult to extract from US 
images, and are high time-consuming due to the absence 
of specialized knowledge about different image conditions, 
the segmentation process cannot fulfill high accuracy for 
three trimesters, and the training parameters are limited to 
conduct the experiments when simulated on real-time data. 
To solve the existing state-of-the-art methods, the proposed 
DR-ASPnet model qualitative findings outperform existing 
methods in handling incomplete regions of the head while 
generating smooth segmentations for three different trimes-
ters. Furthermore, in certain cases, it relies on a significant 
number of contour pixels to estimate the HC and effectively 
extracts appearance and shape features from the head con-
tour of US images. Further, the DR-ASPnet approach shows 
excellent accuracy; a DSC of over 98.86% with low training 
and validation loss values indicates that the model is learn-
ing the underlying patterns effectively. Besides, it takes a 
shorter average running time of 5.4 ms for fetal HC segmen-
tation and measurement when tested on US images.

In the context of the proposed DR-ASPnet model, the 
worst-case performance indicates that the method performs 
under the most challenging and difficult conditions. From 
the worst case performance shown in Fig.  12, the DR-
ASPnet model require large and diverse training datasets to 
generalize well to new, unseen data. However, the training 
data does not cover a broad spectrum of FH appearances, 
or if it’s not representative of the conditions, the segmenta-
tion model might fail to adapt to new cases. The robust-
ness of the ellipse fitting step can also impact segmentation 
results. However, the DR-ASPnet method relies heavily on 
the robustness of ellipse fitting, and the initial conditions 
for fitting the ellipse are not accurate, which can lead to fail-
ures in cases where the FH shape deviates significantly from 
an ellipse. Even though the proposed DR-ASPnet model 

Fig. 11   Box plot results for fetal HC parameter

(a) (b)

Fig. 12   Failure results of the proposed model: a US image, b worst 
performance result of segmented and fitted ellipse
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obtains potential results, there exist some limitations. (1) 
In certain cases, fetal structures may be partially obscured 
or difficult to visualize in US images. This can occur due to 
maternal obesity and suboptimal imaging conditions. These 
challenges can affect the accuracy of segmentation and sub-
sequent measurement estimation. (2) Fetal US images can 
exhibit significant anatomical variability due to gestational 
age and maternal factors. This variability can pose chal-
lenges in accurately segmenting fetal structures and fitting 
ellipses to estimate measurements. (3) Depending on the 
healthcare setting, acquiring patient 3D volumes is more 
time-consuming and resource-intensive compared to obtain-
ing 2D US images. This can be due to cost constraints and 
the limited availability of specialized equipment.

Conclusion and Future Scope

This paper presents automatic FH segmentation and HC esti-
mation using the DR-ASPnet model with post-processing and 
robust ellipse fitting in US images. The image pre-processing 
and augmentation steps were applied to solve the blurred 
image and variations in different pixel sizes over different tri-
mesters for the training and testing processes. Specifically, by 
developing three network models, i.e., appearance-based com-
plex density regression, appearance and shape-based hierar-
chical density regression, and an appearance and shape-based 
DCNN classifier, our DR-ASPnet model essentially solves 
the problems of FH segmentation from US images. Next, we 
employed three morphological operations, i.e., area open-
ing, dilation, and fill hole, to smooth the segmented output in 
the post-processing. Then, we applied the REFLS method to 
determine the best fitting parameters from the FH points for 
HC estimation in US images. Implementation results of the 
DR-ASPnet model attain higher segmentation accuracy and 
measurement accuracy with less running time on the publicly 
available HC18 dataset and also obtain better performance than 
other methods. In future work, we could plan to investigate the 
proposed model on other medical datasets to estimate other 
fetal biometry parameters. Besides, we will focus on develop-
ing 3D segmentation algorithms that can handle the inherent 
challenges of working with volumetric data on the fetal head.
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